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Abstract. The proof of the loop-counting method for the 2D Ising model is simplified by analysing
the root of the determinant of the transfer matrix. The one-to-one correspondence between the
partition function and the root is obtained in a way which is more transparent than in other
approaches. In the proposed method the vanishing of certain classes of loop diagrams takes place
automatically.

1. Introduction

The well known combinatorial method of solving the 2D Ising model was introduced by Kac
and Ward [1] and later improved by Vdovichenko [2]. Unfortunately, in the literature there
exist only a few complete proofs of the method. The first proof was given by Sherman [3]
and Burgoyne [4], while the simplest proof so far was given by Morita [5]. In all approaches
one faces the problem of proving one-to-one correspondence between the partition function,
which is represented by the sum of closed polygons, and the Taylor expansion of the root
of the special determinant. Unfortunately, this correspondence is clearly seen only for very
simple diagrams. The Taylor expansion contains very complicated diagrams and not all of
them correspond to closed polygons. This causes the necessity of proving the cancellation of a
broad class of diagrams. Our point is that in order to complete the proof one only has to prove
the cancellation of a subset of these diagrams. The remaining diagrams cancel automatically
due to the fact that the square of the considered expression is equal to the special determinant.
Although this method does not allow one to find the solution for the 3D or 2D lattice in a
nonzero external field, the proposed proof of cancellation of diagrams may be applied if the
partition function of some model can be expressed by the root of a determinant.

2. Diagrammatic theorem

Every planar Ising lattice can be transformed into the rectangular lattice by attaching suitable
coupling constants to the bonds connecting spins and—if necessary—adding auxiliary spins.
Thus every partition function of the planar lattice can be written in the form

Z =
∑
{σij }

∏
ij

exp(βJ1ij σij σi+1j + βJ2ij σij σij+1) (1)
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or equivalently

Z =
∑
{σij }

∏
ij

((1 − K2
ij )(1 − L2

ij ))
− 1

2 (1 + Kijσijσi+1j )(1 + Lijσijσij+1). (2)

J1ij , J2ij are the coupling constants in the horizontal and vertical directions,Kij = tanh(βJ1ij ),
Lij = tanh(βJ2ij ) and σij = ±1. The sum is taken over all spin configurations. In case of
periodic boundary conditions indices i, j are cyclic. The quantity z, which will be essential
for further analysis, is defined in the following way:

Z = z
∏
ij

2((1 − K2
ij )(1 − L2

ij ))
− 1

2 . (3)

By splitting Z into a sum of products one is left with only those terms in which all powers
of spin variables are even. Therefore z is the sum of all different closed diagrams, created by
drawing polygons on the lattice in such a way that only an even number of bonds enters each
lattice site. The weight of a given diagram is equal to the product of all coupling constants
attached to the bonds of the diagram.

To calculate these diagrams we shall construct the special transfer matrix V using
the formalism proposed by Vdovichenko [2]. Instead of considering the space of spin
configurations one considers the space of directed bonds. Each bond can be denoted as
|klν〉 where k and l denote the starting point of the bond (lattice site) and ν the direction
(ν = 1, . . . , 4). Numbers ν = 1, 2, 3, 4 correspond to directions from [0, 0] to [1, 0], [0, 1],
[−1, 0] and [0,−1], respectively. The maximum dimension of the space is four times the
number of spins. The transfer matrix V , which acts in this space, must satisfy the following
conditions.

• It transforms the given bond into one with the starting point located where the direction
of the given bond points.

• It does not allow us to transform the given bond into one with opposite direction.
• The weight of a matrix element is equal to the coupling constant (Kij or Lij ) attached to

the given bond.
• For each matrix element one introduces the additional weight chosen in such a way that

the product of matrix elements associated with a loop without intersections is equal to −1.

The schematic structure of V is shown in figure 1. The following form of the transfer matrix
elements is possible:

V |kl1〉 = Kk,l(|k + 1, l, 1〉 − |k + 1, l, 2〉 + |k + 1, l, 4〉)
V |kl2〉 = Lk,l(−|k, l + 1, 1〉 + |k, l + 1, 2〉 + |k, l + 1, 3〉)
V |kl3〉 = Kk−1,l(|k − 1, l, 2〉 + |k − 1, l, 3〉 + |k − 1, l, 4〉)
V |kl4〉 = Lk,l−1(|k, l − 1, 1〉 + |k, l − 1, 3〉 + |k, l − 1, 4〉).

(4)

It is straightforward to check that all changes of the sign are caused by elements of the
type 〈i + 1j2|V |ij1〉 and 〈ij + 11|V |ij2〉, whose number is always odd for a loop with no
intersections. Thus the last condition in the list above is fulfilled.

Our main purpose is to prove the following theorem.

Diagrammatic theorem.

z = [det(I − V )]
1
2 (5)

where z and V are defined by (3) and (4) for the planar lattice.

Remark. The square root in equation (5) is single valued only for small values of Kij and
Lij . However, this constraint does not affect the proof since we will treat this expression only
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Figure 1. The structure of matrix V .

as a formal series. Nevertheless, in the explicit calculation of this expression we must treat
it as an analytic extension of the function defined by the series at Kij = 0, Lij = 0. This
is especially important in the case of periodic boundary conditions. (For a typical problem
related to crossing the critical point see [6].)

3. Proof of the diagrammatic theorem

Every term in the series expansion of [det(I − V )]
1
2 has the form

ω
∏
ij

K
α(ij)

ij L
β(ij)

ij (6)

whereω is independent ofKij ,Lij but depends on the exponentsα(ij), β(ij) ∈ N . Expression
det(I −V ) is also a sum of terms of this form. The following lemmas play a crucial role in our
simplification of the loop-counting method. They will allow us to exclude from consideration
all terms where ∃i, j : α(ij) > 2 or β(ij) > 2.

Lemma 1. In the series expansion of det(I − V ) in variables Kij and Lij all nonzero terms
of the form (6) satisfy

∀i, j : α(ij) β(ij) ∈ {0, 1, 2}. (7)

Proof. The determinant is a sum of such products of matrix elements that two elements
associated with the same row or column cannot be present simultaneously in the same product.
The only elements of V containing the same Kij but referring to a different row and column
have the form 〈i + 1jµ|V |ij1〉 and 〈ijν|V |i + 1j3〉 (similarly for Lij ). �

Lemma 2. If there exists any term of the form (6) in the series expansion of [det(1 − V )]
1
2

such that

∃i, j : α(ij) > 2 or β(ij) > 2 (8)

then there exists an element in this series satisfying (7), in which

∃i, j : α(ij) = 2 or β(ij) = 2. (9)
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Figure 2. Examples of diagrams.

Proof. Let us take a term satisfying (8) such that∑
ij

(α(ij) + β(ij)) is the least for this group of terms. (10)

If there is more than one such term then one takes any of them. Suppose that there are no
terms satisfying (7) and (9). After taking the square of the whole expression we obtain a sum
of all products of two terms of the expansion of the square root. Multiplication of two terms,
each satisfying ∀i, j : α(ij) < 2 and β(ij) < 2, can never lead to a product satisfying (8).
Moreover, the only way to obtain the term satisfying (8) and (10) (with double weight) is to
multiply unity by this term. However, the previous lemma implies that no such terms exist in
the expansion of the determinant. �

The two above lemmas make it clear that we need to consider only terms for which
∀i, j : α(ij), β(ij) � 2 and to show that there are no terms satisfying (9).

Below the following expansion will be used:

[det(I − V )]
1
2 = exp

(
− 1

2

∞∑
n=1

tr V n/n

)

=
∞∑

(sj )�0

∞∏
n=1

(−1)sn(tr V n)sn/[(2n)snsn!]. (11)

In equation (11) tr V n is a sum of products of matrix elements representing directed paths on
the lattice. The paths begin and end as lines with the same starting point and direction (due to
the trace operation): they form connected diagrams. Every connected diagram of this sum is
a product of n suitable coupling constants and has an appropriate sign.

It follows from equation (4) that the sign of every connected diagram without intersections
is equal to −1. It can be checked (see also [7]) that the sign of any connected diagram is equal
to (−1)m+1, where m is a number of intersections.

The rhs of equation (11) is a sum of products of connected diagrams, which will be
from now on denoted as diagrams. Figure 2 presents various possible structures of diagrams.
Connected parts intersect one another at an even number of points. Because there is a minus
sign for every connected part of a diagram the resulting sign of a diagram in equation (11) is
(−1)m, where m is the number of all intersections.
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Figure 3. Examples of double loops (undirected).

Figure 4. Three connections of bonds.

Now we consider only those diagrams contributing to equation (11) which satisfy
∀i, j : α(ij), β(ij) � 2. The denominator 2sn is equal to the number of ways of attaching
directions to diagrams. By considering only undirected diagrams one gets rid of the above
denominator. An important example of undirected diagrams is a double loop, which is obtained
by placing two identical undirected connected diagrams on each other or it becomes such after
changing the connection of bonds at one point (in the middle of the bond, not at a lattice site,
figure 3).

Remark. All connections are made in such a way that when a certain bond is passed several
times then the ends of the bond are copied a corresponding number of times and lines can be
drawn from the first to the second end. Therefore there are only two possibilities of connecting
the ends in a twice-passed bond: parallel or crossing.

The denominator sn! takes into account the number of permutations. n takes into account
the fact that connected diagrams of tr V n have as many copies as there are possible starting
bonds. Double loops are exceptions. In the first case they leave denominator 2! untouched, in
the second starting bonds are counted twice. Therefore the weight of diagram of equation (11)
satisfying (7) is 1

2d , where d is the number of double loops in a given diagram.
For a given diagram with a bond passed twice there always exists another diagram with

the number of intersections differing by one. Thus these two diagrams cancel each other.
For this reason according to lemma 2 only diagrams with bonds passed once survive. There
are now three possible connections of bonds in the lattice site (figure 4). They correspond to
three constructions of a diagram with the same weight but different signs (−,+,+). Only one
diagram without an intersection at the lattice site survives. When this reasoning is repeated for
every site where four bonds of a diagram meet, one is left with only single diagrams without
intersections. They are equivalent to products of closed polygons drawn on the lattice, and
they give only products of coupling constants attached to bonds of polygons. Their sum is
equal to z as shown in the previous section.
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4. Periodic boundary conditions

The above theorem works only for planar lattices, but there exists a method of solving the
problem with periodic boundary conditions introduced by Potts and Ward [6]. One introduces
three matrices Vi , i = 1, 2, 3:

V1|kl1〉 = eiπ/MV |kl1〉 V1|kl2〉 = eiπ/NV |kl2〉
V1|kl3〉 = e−iπ/MV |kl3〉 V1|kl4〉 = e−iπ/NV |kl4〉
V2|kl1〉 = eiπ/MV |kl1〉 V2|kl2〉 = V |kl2〉
V2|kl3〉 = e−iπ/MV |kl3〉 V2|kl4〉 = V |kl4〉
V3|kl1〉 = V |kl1〉 V3|kl2〉 = eiπ/NV |kl2〉
V3|kl3〉 = V |kl3〉 V3|kl4〉 = e−iπ/NV |kl4〉

(12)

where M and N are the sizes of the lattice in directions [x, 0] and [0, y].
The sign of the simple loop (cycle) in direction [x, 0] or [0, y] which can occur in tr V n is

+1 since there are no turns. One introduces numbers a and b which count how many times the
diagram winds the torus in direction [x, 0] and [0, y]. The parity of a and b is independent of
any deformation or the method of connections at the point where four bonds meet. One can
now take any diagram in equation (11) and deform it to obtain the product of simple loops.
Each simple loop changes the sign. However, the ab intersections must be taken into account
and therefore the sign of a diagram in equation (11) is (−1)m+ab+a+b, where m is the number
of intersections. Matrices Vi , i = 1, 2, 3 change this sign by (−1)a+b,a,b respectively, so that
four groups of diagrams (for different parity of a and b) have different signs. Let zkl be the
sum of diagrams with the parity of the number of cycles in direction [x, 0] and [0, y] equal to
the parity of k and l where k, l ∈ {0, 1}. One obtains the equations for zkl :

z00 − z10 − z01 − z11 = [det(I − V )]
1
2

z00 + z10 + z01 − z11 = [det(I − V1)]
1
2

z00 + z10 − z01 + z11 = [det(I − V2)]
1
2

z00 − z10 + z01 + z11 = [det(I − V3)]
1
2

z00 + z10 + z01 + z11 = z.

(13)

Solving these equations we obtain the exact expression for z:

z = 1
2

( 3∑
i=1

[det(I − Vi)]
1
2 − [det(I − V )]

1
2

)
. (14)

5. Conclusion

When proving the diagrammatic theorem we took the advantage of using the root of a
determinant. This allowed us, in contrast to the previous papers, to avoid the analysis of very
complicated diagrams. In our approach they cancel automatically. Then it is only necessary to
analyse a small group of diagrams (with bonds appearing finite number of times in a diagram).
This makes this method applicable to other cases in which the partition function of certain
model is represented as the root of low degree of a determinant. Then one may check the
one-to-one correspondence between the diagrams in the partition function and the terms of the
Taylor expansion in a very effective way. Moreover, this shows clearly that the combinatorial
method of solving the planar Ising-type models is the easiest one.
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